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SUMMARY

There are no therapies that reverse the proteotoxic
misfolding events that underpin fatal neurodegener-
ative diseases, including amyotrophic lateral scle-
rosis (ALS) and Parkinson’s disease (PD). Hsp104,
a conserved hexameric AAA+ protein from yeast,
solubilizes disordered aggregates and amyloid but
has no metazoan homolog and only limited activity
against human neurodegenerative disease proteins.
Here, we reprogram Hsp104 to rescue TDP-43,
FUS, and a-synuclein proteotoxicity by mutating
single residues in helix 1, 2, or 3 of the middle domain
or the small domain of nucleotide-binding domain
1. Potentiated Hsp104 variants enhance aggregate
dissolution, restore proper protein localization, sup-
press proteotoxicity, and in a C. elegans PD model
attenuate dopaminergic neurodegeneration. Poten-
tiating mutations reconfigure how Hsp104 subunits
collaborate, desensitize Hsp104 to inhibition, obviate
any requirement for Hsp70, and enhance ATPase,
translocation, and unfoldase activity. Our work es-
tablishes that disease-associated aggregates and
amyloid are tractable targets and that enhanced dis-
aggregases can restore proteostasis and mitigate
neurodegeneration.
INTRODUCTION

Protein misfolding underpins several fatal neurodegenerative

disorders, including amyotrophic lateral sclerosis (ALS) and Par-

kinson’s disease (PD) (Cushman et al., 2010). In PD, a-synuclein

(a-syn) forms highly toxic prefibrillar oligomers and amyloid fibrils

that accumulate in cytoplasmic Lewy bodies (Cushman et al.,
170 Cell 156, 170–182, January 16, 2014 ª2014 Elsevier Inc.
2010). In ALS, TDP-43 or FUS accumulate in cytoplasmic inclu-

sions in degenerating motor neurons (Robberecht and Philips,

2013). Unfortunately, treatments for these disorders are pallia-

tive and ineffective due to the apparent intractability of aggre-

gated proteins. Effective therapies are urgently needed that

eliminate the causative proteotoxic misfolded conformers via

degradation or reactivation of the proteins to their native fold.

Inspiration can be drawn from nature, where amyloidogene-

sis and protein misfolding have been subjugated for adaptive

modalities (Newby and Lindquist, 2013). For example, beneficial

yeast prions are tightly regulated by Hsp104, a hexameric AAA+

protein that rapidly deconstructs various amyloids andprefibrillar

oligomers (DeSantis et al., 2012; Lo Bianco et al., 2008; Newby

and Lindquist, 2013). Hsp104 also reactivates proteins from

disordered aggregates after environmental stress (Shorter,

2008). Hsp104 is highly conserved in eubacteria and eukaryotes,

except inmetazoa, which bafflingly lack anHsp104 homolog and

display limited ability to disaggregate disordered and amyloid

aggregates (Duennwald et al., 2012; Shorter, 2008, 2011).

Thus, Hsp104 could be harnessed to augment human proteosta-

sis and counter protein misfolding in neurodegenerative disease

(Shorter, 2008). Indeed, Hsp104 synergizes with human Hsp70

and Hsp40 to resolve various misfolded species linked with

human neurodegenerative disease and can partially antagonize

protein misfolding and neurodegeneration in metazoa (Cush-

man-Nick et al., 2013; DeSantis et al., 2012; Duennwald et al.,

2012; Lo Bianco et al., 2008; Shorter, 2011; Vacher et al.,

2005). Hsp70 overexpression can also mitigate neurodegen-

eration (Cushman-Nick et al., 2013). However, these potentially

therapeutic activities remain limited and vast improvements

are needed to maximize therapeutic potential. Indeed, very

high concentrations of Hsp104 are needed to antagonize

human neurodegenerative disease proteins, which Hsp104

never ordinarily encounters, and some substrates are refractory

to Hsp104 (DeSantis et al., 2012; Lo Bianco et al., 2008).

A key but elusive goal is to engineer or evolve optimized

chaperones against neurodegenerative disease substrates to

mailto:jshorter@mail.med.upenn.edu
http://dx.doi.org/10.1016/j.cell.2013.11.047
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cell.2013.11.047&domain=pdf


maximize therapeutic efficacy (Shorter, 2008). Chaperones are

impractical targets for protein engineering due to their typically

large size, and protein disaggregases such as Hsp104 have

poorly understood structures, making rational design chal-

lenging (Saibil, 2013). Here, we broach this issue and isolate

potentiated Hsp104 variants that eradicate TDP-43, FUS, and

a-syn aggregates and potently suppress toxicity. We report

several artificially engineered chaperones to optimize proteo-

stasis and thwart neurodegeneration.We suggest that neuropro-

tection may be possible for diverse neurodegenerative diseases

via subtle structural modifications of existing chaperones.

RESULTS

Substrate-Binding Tyrosines in Hsp104 Pore Loops Are
Optimal for Disaggregation
Hsp104 is adapted for disaggregation of the yeast proteome.

We sought to engineer Hsp104 variants to disaggregate TDP-

43, an RNA-binding protein with a prion-like domain (Cushman

et al., 2010), which has no yeast homolog and is not a natural

Hsp104 substrate. A yeast model of TDP-43 proteinopathies

has been developed in which TDP-43 is overexpressed via a

galactose-inducible promoter (Johnson et al., 2008). TDP-43

aggregates in the cytoplasm and is toxic to yeast, which pheno-

copies TDP-43 pathology in disease and has enabled identifica-

tion of common ALS genetic risk factors (Elden et al., 2010).

To explore Hsp104 sequence space against TDP-43 toxicity,

we employed Dhsp104 yeast to assess Hsp104 variants in the

absence of wild-type (WT) Hsp104. TDP-43 is highly toxic in

Dhsp104 yeast and Hsp104WT provides minimal rescue of

toxicity (Johnson et al., 2008). Thus, Dhsp104 yeast provide a

platform to isolate more active Hsp104 variants. Each Hsp104

monomer contains two nucleotide-binding domains (NBD1 and

NBD2) as well as an N-terminal, middle, and C-terminal domain

(DeSantis and Shorter, 2012). Hsp104 forms ring-shaped hex-

amers with a central pore through which substrate is threaded.

To alter substrate specificity, we assessed Hsp104 variants

bearing mutations in Hsp104’s two substrate-binding pore loops

(DeSantis and Shorter, 2012). We mutated the conserved pore

loop residues, Y257 and Y662, which mediate substrate binding

and translocation (Tessarz et al., 2008) to all amino acids and

screened this library of 400 variants for rescue of TDP-43

toxicity. After several rounds of selection, nearly all the variants

possessed Y at one or more often both pore-loop positions.

None of the pore-loop Hsp104 variants were more active than

Hsp104WT in rescuing TDP-43 toxicity. Thus, Y257 and Y662

are likely optimal for disaggregation.

Select Missense Mutations in the Middle Domain
Potentiate Hsp104 Activity
Next, we explored the coiled-coil middle domain (MD) of

Hsp104, which is less conserved than the substrate-binding

pore loops. MD variants can have unexpected gain-of-function

phenotypes (Schirmer et al., 2004). The Hsp104 MD (residues

411–538; Figure 1A) facilitates optimal ATPase activity, commu-

nication between NBD1 and NBD2, intrinsic disaggregase activ-

ity, and interactions with Hsp70 during disordered aggregate

dissolution (DeSantis and Shorter, 2012). We randomly muta-
genized the MD and screened this Hsp104 library against

a-syn, FUS, or TDP-43 toxicity (Johnson et al., 2008; Outeiro

and Lindquist, 2003; Sun et al., 2011). We employed Dhsp104

yeast, as deletion of Hsp104 does not affect a-syn, FUS, or

TDP-43 toxicity (Johnson et al., 2008; Ju et al., 2011). We iden-

tified several Hsp104 variants that potently rescued a-syn,

FUS, and TDP-43 toxicity, whereas Hsp104WT was ineffective

(Figure 1B). Potentiated Hsp104 variants had a missense muta-

tion in helix 1 (Hsp104V426L) or in the distal loop between helix 1

and 2 (Hsp104A437W) or in helix 3 (Hsp104A503V or Hsp104Y507C)

(Figures 1A and 1B). Unexpectedly, we uncovered an enhanced

variant with a missense mutation in the NBD1 small domain

(Hsp104N539K) (Figures 1A and 1B). Thus, the MD or small

domain of NBD1 can be mutated to potentiate Hsp104 activity

against a-syn, FUS, and TDP-43.

Two potentiating mutations, A503V and Y507C, lie in MD helix

3. Thus, we performed a valine scan of helix 3 (residues 498–507)

in search of additional enhanced variants (Figures 1C and 1D).

Most helix-3 valine substitutions behaved like Hsp104WT

(Figure 1C). However, Hsp104D504V suppressed a-syn, FUS,

and TDP-43 toxicity (Figure 1C). Hsp104D498V and Hsp104Y507V

suppressed FUS and a-syn toxicity, but not TDP-43 toxicity (Fig-

ure 1C). Thus, select missense mutations in helix 3 engender

potentiated Hsp104 variants with altered substrate specificity.

TwodifferentY507mutations yieldedenhancedvariants. Thus,

we explored other substitutions at this position. Hsp104Y507A,

Hsp104Y507C, and Hsp104Y507D rescued a-syn, FUS, and TDP-

43 toxicity (Figure S1A available online). Likewise, additional sub-

stitutions at D504 (to C), V426 (to G), or N539 (to E, D, G, or K)

yielded potentiated Hsp104 variants against FUS toxicity (Fig-

ures S1A and S1B). Thus, diverse mutations at specific positions

in the MD enhance Hsp104 activity.

Hsp104A503X Variants Suppress TDP-43 Toxicity and
Promote Its Proper Localization
Hsp104A503V was among the strongest suppressors of a-syn,

FUS, and TDP-43 toxicity, and so we explored this position

further and mutated A503 to all amino acids. None of these

Hsp104 variants were toxic to yeast when overexpressed at

30�C (Figure S2). Mutation of A503 to V, S, or C suppressed

TDP-43 toxicity; Hsp104A503C most strongly suppressed TDP-

43 toxicity, followed by Hsp104A503S and Hsp104A503V (Figures

2A, 2B, and S3A). Surprisingly, mutation of A503 to nearly any

residue suppressed TDP-43 toxicity, whereas Hsp104A503P

enhanced toxicity (Figures 2A and S3A). Indeed, we could now

mutate the conserved pore loop Y residues (Y257 and Y662) to

F (Hsp104A503V-DPLF) and retain suppression of TDP-43 toxicity

(Figure 2A). Rescue of TDP-43 toxicity was not due to lower

levels of TDP-43, which were roughly equal across strains (Fig-

ure 2C). Likewise, rescue could not be explained by higher

Hsp104 expression. Hsp104 variants were expressed at slightly

lower levels than Hsp104WT (Figure 2C). Quantitative immuno-

blot revealed that Hsp104 hexamer:TDP-43 ratios were

�1:1.31 for Hsp104WT and �1:2.20 for Hsp104A503V. Hsp70

and Hsp26 levels were also similar for all strains, indicating

that Hsp104 variants do not induce a heat shock response

(HSR; Figure 2C). Hsp104A503V expression from the native

Hsp104 promoter (which is weaker than the galactose promoter)
Cell 156, 170–182, January 16, 2014 ª2014 Elsevier Inc. 171



Figure 1. Hsp104 MD Variants Rescue Diverse Proteotoxicity Models

(A) Homology model of the MD and a portion of the small domain of NBD1 of Hsp104. Side chains of key residues are shown as sticks.

(B) Dhsp104 yeast strains integrated with galactose-inducible a-syn, FUS, or TDP-43 were transformed with the indicated Hsp104 variant or vector control.

Strains were serially diluted 5-fold and spotted on glucose (off) or galactose (on) media.

(C) Hsp104 variants harboring missense mutations to valine ranging from residue D498 to Y507 were expressed with a-syn, FUS, or TDP-43.

(D) Close-up of MD helix 3 from (A). Mutation of D498, A503, D504, or Y507 activates Hsp104.

See also Figure S1.
suppressed TDP-43 toxicity (Figures S4A and S4B). Here, quan-

titative immunoblot revealed that Hsp104 hexamer:TDP-43 ra-

tios were �1:1.70 for Hsp104WT and �1:4.55 for Hsp104A503V.

Thus, even low Hsp104A503V levels rescued TDP-43 toxicity.

Finally, Hsp104A503V, Hsp104A503S, and Hsp104A503V-DPLF

rescued TDP-43 toxicity in Dire1 (to disrupt the unfolded protein

response [UPR]) and Datg8 (to disrupt autophagy) strains (Fig-

ure 2D). Thus, neither the UPR nor autophagy is needed for

enhanced Hsp104 variants to rescue TDP-43 toxicity.

TDP-43 normally shuttles between the nucleus and cyto-

plasm. However, in ALS, TDP-43 is usually depleted from the nu-
172 Cell 156, 170–182, January 16, 2014 ª2014 Elsevier Inc.
cleus and aggregated in the cytoplasm of degenerating motor

neurons (Robberecht and Philips, 2013). Indeed, cytoplasmic

TDP-43 aggregates persist uponHsp104WT overexpression (Fig-

ure 2E). By contrast, Hsp104A503V eliminated cytoplasmic

TDP-43 aggregates and �46% of cells had nuclear TDP-43

localization (Figure 2E). Accordingly, Hsp104A503V reduced the

amount of insoluble TDP-43 by �57%, whereas Hsp104WT

was ineffective (Figure 2F). Thus, Hsp104A503V eliminates TDP-

43 aggregation and toxicity and restores TDP-43 to the nucleus.

These phenotypes are a therapeutic goal for ALS and other TDP-

43 proteinopathies. Several suppressors of TDP-43 toxicity have



Figure 2. Hsp104A503X Variants Suppress TDP-43 Toxicity, Aggregation, and Mislocalization

(A)Dhsp104 yeast transformedwith TDP-43 andHsp104 variants, or YFP and vector, were serially diluted fivefold and spotted onto glucose (off) or galactose (on).

(B) Selected strains from (A) were induced in liquid and growth was monitored by A600nm.

(C) Strains from (B) were induced for 5 hr, lysed, and immunoblotted. Uninduced (untreated) and heat-shocked cells (HS) serve as controls. 3-Phosphoglycerate

kinase (PGK1) serves as a loading control.

(D) WT, Dire1, or Datg8 yeast were cotransformed with vector control or TDP-43 plus vector or the indicated Hsp104 variant and were serially diluted 5-fold and

spotted onto glucose (off) or galactose (on).

(E) Fluorescencemicroscopy of cells coexpressing fluorescently tagged TDP-43 andHsp104WT, Hsp104A503V, or vector. Cells were stained with DAPI to visualize

nuclei (blue). TDP-43 localization was quantified by counting the number of cells containing colocalized nuclear staining. Values represent means ± SEM (n = 3).

(F) Dhsp104 yeast cotransformed with TDP-43 and vector or the indicated Hsp104 variant were induced with galactose for 5 hr at 30�C, lysed and processed for

sedimentation analysis and quantitative immunoblot. The relative amount of insoluble TDP-43 was determined as a percentage of the vector control. Values

represent means ± SEM (n = 2).

See also Figures S2, S3, and S4.
been isolated in yeast, but none clear cytoplasmic TDP-43 ag-

gregates (Sun et al., 2011). Thus, our enhanced Hsp104 variants

are the first (to our knowledge) genetic suppressors that eradi-

cate TDP-43 aggregates and restore TDP-43 to the nucleus.

Hsp104A503X Variants Suppress FUS Toxicity and
Aggregation
Next, we tested Hsp104A503X variants for rescue of FUS toxicity

in yeast. FUS, like TDP-43, is a nuclear RNA-binding protein with
a prion-like domain that forms cytoplasmic aggregates in degen-

erating neurons of FUS proteinopathy patients and in yeast (Ju

et al., 2011; Robberecht and Philips, 2013; Sun et al., 2011).

As for TDP-43, mutation of A503 to any amino acid except P

strongly suppressed FUS toxicity, as did Hsp104A503V-DPLF (Fig-

ures 3A, 3B, and S3B). Hsp104A503G most strongly suppressed

FUS toxicity (Figures 3A, 3B, and S3B). Rescue of FUS toxicity

by Hsp104A503X variants (or Hsp104D498V or Hsp104D504V) could

not be explained by lower FUS levels, induction of Hsp70 or
Cell 156, 170–182, January 16, 2014 ª2014 Elsevier Inc. 173



Figure 3. Hsp104A503X Variants Suppress FUS Toxicity and Aggregation

(A) Dhsp104 yeast transformed with FUS and the Hsp104 variants, or YFP and vector, were serially diluted 5-fold and spotted onto glucose (off) or galactose (on).

(B) Selected strains from (A) were induced in liquid and growth was monitored by A600nm.

(C) Strains from (B) were induced for 5 hr, lysed, and immunoblotted.

(D) WT, Dire1, or Datg8 yeast were cotransformed with vector control, or FUS plus vector, or the indicated Hsp104 variant and were serially diluted 5-fold and

spotted onto glucose (off) or galactose (on).

(E) Fluorescence microscopy of cells coexpressing FUS-GFP and Hsp104WT, Hsp104A503V, or vector. Cells were stained with Hoechst dye to visualize nuclei

(blue). FUS aggregation was quantified by counting the number of cells containing 0, 1, or more than 1 foci. Values represent means ± SEM (n = 3).

(F) Dhsp104 yeast cotransformed with FUS and vector or the indicated Hsp104 variant were induced with galactose for 5 hr at 30�C, lysed, and processed for

sedimentation analysis and quantitative immunoblot. The relative amount of insoluble FUS was determined as a percentage of the vector control. Values

represent means ± SEM (n = 2).

See also Figures S3 and S4.
Hsp26 in a HSR, or higher Hsp104 levels (Figure 3C). Indeed,

quantitative immunoblot revealed that Hsp104 hexamer:FUS ra-

tios were �1:5.13 for Hsp104WT and �1:3.25 for Hsp104A503V.

Even low Hsp104A503V levels expressed from the natural

Hsp104 promoter suppressed FUS toxicity (Figures S4C and

S4D). Here, quantitative immunoblot revealed that Hsp104

hexamer:FUS ratios were �1:5.21 for Hsp104WT and �1:9.58
174 Cell 156, 170–182, January 16, 2014 ª2014 Elsevier Inc.
for Hsp104A503V. Rescue of FUS toxicity by Hsp104A503V,

Hsp104A503S, and Hsp104A503V-DPLF occurred in Dire1 strains

and Datg8 strains (Figure 3D). Thus, the UPR and autophagy

are not required for potentiated Hsp104 variants to suppress

FUS toxicity.

Hsp104A503V eliminated FUS aggregates, whereas Hsp104WT

had no effect (Figure 3E). In contrast to TDP-43, FUS was now



diffuse in the cytoplasm (Figure 3E) because the yeast nuclear

transport machinery fails to decode the FUS PY-NLS (Ju

et al., 2011). Hsp104A503V reduced the amount of insoluble

FUS by �49%, whereas Hsp104WT was ineffective (Figure 3F).

Genome-wide overexpression screens have yielded several

suppressors of FUS toxicity in yeast, but none that solubilize

FUS inclusions (Ju et al., 2011; Sun et al., 2011). Thus, potenti-

ated Hsp104 variants are the first (to our knowledge) genetic

suppressors that eradicate FUS aggregates.

Hsp104A503X Variants Suppress a-Syn Toxicity and
Promote Its Proper Localization
Next, we tested Hsp104A503X variants against a-syn toxicity in

yeast. a-Syn is a lipid-binding protein that localizes to the plasma

membrane but forms cytoplasmic inclusions in degenerating

dopaminergic neurons in PD and in yeast (Cushman et al., 2010;

Outeiro andLindquist, 2003). Nearly all Hsp104A503X variants sup-

pressed a-syn toxicity except Hsp104A503P, which had no effect

(Figures 4A, 4B, and S3C). By contrast, Hsp104WT slightly

enhanced a-syn toxicity (Figures 4A and 4B). Hsp104A503V-DPLF

suppresseda-syn toxicity, thoughnot as strongly asHsp104A503V

(Figure 4A). Rescue of a-syn toxicity by Hsp104A503X variants

(or Hsp104D504V) could not be explained by lower a-syn levels,

induction of Hsp70 or Hsp26 in a HSR, or higher Hsp104 levels

(Figure 4C). Quantitative immunoblot indicated that the Hsp104

hexamer:a-syn ratios were �1:2.43 for Hsp104WT and �1:2.84

for Hsp104A503V. Expression of Hsp104A503V from the Hsp104

promoter suppressed a-syn toxicity, whereas Hsp104WT had no

effect (Figures S4E and S4F). Here, quantitative immunoblot

indicated that the Hsp104 hexamer:a-syn ratios were �1:3.03

for Hsp104WT and �1:5.79 for Hsp104A503V. Hsp104A503V,

Hsp104A503S, and Hsp104A503V-DPLF rescued a-syn toxicity in

Dire1andDatg8 strains (Figure 4D). Thus, theUPRandautophagy

are not required for rescue.

Hsp104A503V eliminated cytoplasmic a-syn inclusions and

restored plasma membrane a-syn localization, whereas

Hsp104WT had no effect (Figure 4E). Indeed, Hsp104A503V

reduced the amount of insoluble a-syn by �66%, whereas

Hsp104WT increased it by�33.9% (Figure 4F). Thus, potentiated

Hsp104 variants eradicate a-syn inclusions and restore a-syn

localization.

Potentiated Hsp104 Variants Prevent
Neurodegeneration in a C. elegans PD Model
To test potentiated Hsp104 variants in a metazoan nervous

system, we used a transgenic C. elegans PD model, which has

illuminated mechanisms and modifiers of a-syn-induced neuro-

degeneration (Cao et al., 2005; Cooper et al., 2006; Tardiff et al.,

2013). We selected Hsp104A503S and Hsp104A503V-DPLF to study

in this context, which displayed strong (Hsp104A503S) and

moderate (Hsp104A503V-DPLF) rescue of a-syn toxicity (Figure 4A).

We focused on these variants because unlike Hsp104A503V they

conferred greater than WT levels of thermotolerance and were

less toxic to yeast at 37�C when expressed from the galactose

promoter (Figures S5A and S5B).

The dopamine transporter (dat-1) gene promoter was used to

direct expression of Hsp104 variants and a-syn to dopaminergic

(DA) neurons. Expression of a-syn alone resulted in �16% of
animals with normal numbers of DA neurons after 7 days

and �8% of animals after 10 days compared to controls

(Figures 5A–5C). Coexpression of Hsp104WT or an ATPase-

dead, substrate binding-deficient Hsp104DPLA-DWB (which bears

the ‘‘double pore loop’’ and ‘‘double Walker B’’ mutations:

Y257A:E285Q:Y662A:E687Q) did not rescue neurodegeneration

(Figures 5A and 5B). C. elegans expressing Hsp104A503S or

Hsp104A503V-DPLF displayed significant protection (30.5% and

34% normal worms, respectively) compared to the null Hsp104

variant or a-syn alone at day 7 (Figure 5A). This trend continued

at day 10 (Figure 5B), when Hsp104A503S-expressing (21%)

and Hsp104A503V-DPLF-expressing (24%) worms had signifi-

cantly more normal DA neurons compared to a-syn alone

(7.8%), Hsp104DPLA-DWB (10%), or Hsp104WT (11%). Hsp104

variants did not alter a-syn mRNA levels (Figure S5C). Thus,

Hsp104A503S and Hsp104A503V-DPLF remain significantly neuro-

protective against a-syn toxicity even as animals age.

Potentiated Hsp104 Variants Typically Have Elevated
ATPase Activity
Nearly all of the Hsp104A503X variants suppressed a-syn, FUS,

and TDP-43 toxicity in yeast. This unexpected degeneracy is

intriguing as there are few, if any, examples of missense muta-

tions to nearly any class of residue that lead to a therapeutic

gain of function. To explore the mechanism behind this gain of

function, we assessed the biochemical properties of several

Hsp104 variants that suppressed toxicity. Each Hsp104A503X

variant and Hsp104Y507C exhibited �2- to 4-fold higher ATPase

activity than Hsp104WT (Figure 6A). Hsp104D498V has higher

ATPase activity than Hsp104WT, though not as high as the

Hsp104A503X variants (Figure 6A). Hsp104D504C had ATPase ac-

tivity similar to Hsp104WT (Figure 6A). Thus, enhanced Hsp104

variants typically have higher ATPase activity than Hsp104WT.

However, Hsp104D504C illustrates that elevated ATPase activity

is not absolutely required for potentiation.

Potentiated Hsp104 Variants Do Not Require Hsp70 and
Hsp40 for Disaggregation
Rescue of toxicity by enhanced Hsp104 variants might reflect an

altered mechanism of disaggregation. Thus, we assessed activ-

ity against disordered luciferase aggregates (DeSantis et al.,

2012). Hsp104WT was inactive alone and required Hsp70 and

Hsp40, which could be from human (Hsc70 and Hdj2) or yeast

(Ssa1 and Ydj1; Figures 6B and 6C). By contrast, potentiated

Hsp104 variants were extremely active without Hsp70 and

Hsp40, and with the exception of Hsp104D504C, Hsc70 and

Hdj2 further increased activity (Figures 6B and 6C). Typically,

in the absence of Hsc70 and Hdj2, potentiated Hsp104 variants

were �3- to 9-fold more active than Hsp104WT plus Hsc70

and Hdj2 (Figure 6B). The only exception was Hsp104D498V,

which in the absence of Hsc70 and Hdj2 was still as active

as Hsp104WT plus Hsc70 and Hdj2 (Figure 6B). Hsp104WT was

most active in the presence of Ssa1, Ydj1, and the Hsp110,

Sse1 (Figure 6C) (Shorter, 2011). However, even here, Hsp104WT

luciferase reactivation activity only reached Hsp104A503V,

Hsp104A503S, and Hsp104A503V-DPLF activity in the absence

of Ssa1, Ydj1, and Sse1 (Figure 6C). In the presence of

Ssa1, Ydj1, and Sse1, the luciferase reactivation activity of
Cell 156, 170–182, January 16, 2014 ª2014 Elsevier Inc. 175



Figure 4. Hsp104A503X Variants Suppress a-Syn Toxicity, Aggregation, and Mislocalization

(A)Dhsp104 yeast cotransformedwith two copies of a-syn-YFP and the Hsp104 variants, or YFP and vector, were serially diluted 5-fold and spotted onto glucose

(off) or galactose (on).

(B) Selected strains from (A) were induced in liquid and growth was monitored by A600nm.

(C) Strains from (B) were induced for 8 hr in galactose, lysed, and immunoblotted.

(D) WT, Dire1, or Datg8 yeast were cotransformed with vector controls or a-syn plus vector or the indicated Hsp104 variant and were serially diluted 5-fold and

spotted onto glucose (off) or galactose (on).

(E) Fluorescence microscopy of cells coexpressing a-syn-YFP and Hsp104WT, Hsp104A503V, or vector. a-Syn localization was quantified by counting the number

of cells with plasma membrane fluorescence or cytoplasmic aggregates. Values represent means ± SEM (n = 3).

(F) Dhsp104 yeast cotransformed with a-syn and vector or the indicated Hsp104 variant were induced with galactose for 8 hr at 30�C, lysed, and processed for

sedimentation analysis and quantitative immunoblot. The relative amount of insoluble a-syn was determined as a percentage of the vector control. Values

represent means ± SEM (n = 2).

See also Figures S3 and S4.
Hsp104A503V, Hsp104A503S, and Hsp104A503V-DPLF was �7- to

8-fold higher than Hsp104WT (Figure 6C). Potentiated Hsp104

variants are highly active without Hsp70 and Hsp40 (Figures

6B and 6C). Thus, absolute dependence on Hsp70 and Hsp40

hinders Hsp104 from rescuing a-syn, FUS, and TDP-43 toxicity.
176 Cell 156, 170–182, January 16, 2014 ª2014 Elsevier Inc.
Independence from Hsp70 and Hsp40 is promising for applying

Hsp104 variants to reverse protein misfolding in diverse sys-

tems, such as purification of aggregation-prone recombinant

proteins from E. coli where DnaK incompatibility is an issue

(DeSantis and Shorter, 2012).



Figure 5. Hsp104A503S and Hsp104A503V-DPLF

Protect Against a-Syn Toxicity and Dopami-

nergic Neurodegeneration in C. elegans

(A) Hsp104 variants and a-syn were coexpressed in

the dopaminergic (DA) neurons of C. elegans. Her-

maphrodite nematodes have six anterior DA neu-

rons, which were scored at day 7 posthatching.

Hsp104A503S and Hsp104A503V-DPLF have signifi-

cantly greater protective activity than both a-syn

alone and the null variant. Normal worms have a full

complement of DA neurons at this time.

(B) At day 10, there is a decline in wormswith normal

DA neurons. Hsp104A503S and Hsp104A503V-DPLF

exhibit greater protective activity when compared

to Hsp104WT and the null variant. Values represent

means ± SEM (of three independent experiments,

n = 30 per replicate with three to four replicates per

independent experiment; *p < 0.05, one-way

ANOVA group). Normal worms have a full comple-

ment of DA neurons at this time.

(C) Photomicrographs of the anterior region of

C. elegans coexpressing GFP with a-syn. Worms

expressing a-syn alone (left) exhibit an age depen-

dent loss of DA neurons. Worms expressing a-syn

plus Hsp104A503S (right) exhibit greater neuronal

integrity. Arrows indicate degenerating or missing

neurons. Triangles indicate normal neurons.

See also Figure S5.
Potentiated Hsp104 Variants Translocate Substrate
Faster Than Hsp104WT

We next determined that potentiated Hsp104 variants displayed

accelerated substrate translocation. Thus, we used an Hsp104

variant, termed HAP, where G739-K741 are mutated to IGF,

which enables association with the chambered peptidase ClpP

(Tessarz et al., 2008). In the presence of ClpP, translocated sub-

strates are degraded rather than released. Thus, HAP translo-

cates fluorescein isothiocyanate (FITC)-casein for degradation

by ClpP, thereby releasing FITC and increasing fluorescence. In

the presence of ClpP, HAPA503V (Km�1.29mM) is amore effective

FITC-casein translocase than HAPWT (Km �2.88mM) (Figure 6D).

The lower Km for HAPA503V might reflect differences in substrate

recognition rather than translocation speed. However, the Kd

of Hsp104WT (Kd �65 nM) and Hsp104A503V (Kd �80 nM) for

FITC-casein were similar (Figure 6E) as were binding kinetics

(Figure 6F). Thus, substrate recognition by Hsp104WT and

Hsp104A503V is very similar. Hence, we suggest that Hsp104A503V

translocates substratemore rapidly thanHsp104WT. Accelerated

translocation likely enables potentiated variants to avoid kinetic

traps and exert additional force to unfold stable substrates.

Potentiated Hsp104 Variants Are Enhanced Unfoldases
Next, we established that enhanced Hsp104 variants had

enhanced unfoldase activity using a RepA1-70-GFP substrate

(Doyle et al., 2007). To assess RepA1-70-GFP unfolding in the

absence of spontaneous refolding, we added GroELtrap, which

captures unfolded proteins and prevents refolding (Weber-Ban

et al., 1999). Hsp104WT unfolds RepA1-70-GFP, but only in the

presence of a permissive ratio of ATP and ATPgS (Doyle

et al., 2007) (Figures 6G and 6H). Thus, with ATP alone,

Hsp104WT did not unfold RepA1-70-GFP (Figure 6G). By contrast,
Hsp104A503X variants rapidly unfoldedRepA1-70-GFP in the pres-

ence of ATP (Figure 6G). Hsp104WT unfolded RepA1-70-GFP in

the presence of an ATP:ATPgS (3:1) mixture. By contrast, ATP:

ATPgS slightly inhibited Hsp104A503V unfoldase activity, but

even here, Hsp104A503V unfolded RepA1-70-GFP more rapidly

than Hsp104WT (Figure 6G). Hsp104A503X variants had very

similar unfoldase kinetics (Figure 6G). By contrast, Hsp104D498V,

Hsp104D504C, and Hsp104A503V-DPLF were slightly slower unfol-

dases than Hsp104A503V, whereas Hsp104Y507C was slightly

faster (Figure 6H). These differences could reflect changes in

substrate recognition or turnover or both. Regardless, potenti-

ated Hsp104 variants are enhanced unfoldases that are intrinsi-

cally primed to unfold substrates and do not have to wait for

regulatory events (mimicked here by ATPgS addition).

Hsp104A503V Hexamers Are Tuned Differently Than
Hsp104WT Hexamers
Do potentiated Hsp104 variants employ the same mechanism of

intersubunit collaboration as Hsp104WT to disaggregate pro-

teins? How Hsp104 subunits within the hexamer collaborate to

promote disaggregation can be interrogated via mutant subunit

doping. Here, mutant subunits defective in ATP hydrolysis, sub-

strate binding, or both are mixed with WT subunits to generate

heterohexamer ensembles according to the binomial distribution

(DeSantis et al., 2012). Hsp104 forms dynamic hexamers that

exchange subunits on the minute timescale, which ensures sta-

tistical incorporation of mutant subunits (DeSantis et al., 2012).

The disaggregase activity of various heterohexamer ensembles

enables determination of the number of mutant subunits that

inactivate the WT hexamer. Thus, we can determine if subunit

collaborationwithinHsp104 hexamers is probabilistic (sixmutant

subunits are required to abolish activity), subglobally cooperative
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Figure 6. Potentiated Hsp104 Variants Are Tuned Differently Than Hsp104WT

(A) ATPase activity of Hsp104 variants. Values represent means ± SEM (n = 3).

(B) Luciferase aggregates were incubated with Hsp104 variant plus (checkered bars) or minus (clear bars) Hsc70 (0.167 mM) and Hdj2 (0.167 mM). Values

represent means ± SEM (n = 3).

(C) Luciferase aggregates were incubated with Hsp104 variant plus or minus Hsc70 (0.167 mM) and Hdj2 (0.073 mM); Ssa1 and Ydj1; or Ssa1, Ydj1, and Sse1.

Values represent means ± SEM (n = 3).

(D) Increasing concentrations of FITC-casein were incubated with ClpP plus HAPWT or HAPA503V. Initial degradation rates were plotted against FITC-casein

concentration to determine Km. Values represent means ± SEM (n = 3).

(E) FITC-casein was incubated with increasing concentrations of Hsp104WT or Hsp104A503V. Change in fluorescence polarization was plotted against Hsp104

concentration to determine Kd. Values represent means ± SEM (n = 3).

(F)Kinetics ofHsp104WT (1mM)orHsp104A503V (1mM)binding toFITC-casein (0.1mM)assessedbyfluorescencepolarization. Values representmeans±SEM(n=3).

(G and H) RepA1-70-GFP was incubated with Hsp104 variant and GroELtrap plus ATP or ATP:ATPgS (3:1). GFP unfolding was measured by fluorescence.

Representative data are shown.

(I) Buffer, Hsp104A503V-DWA, or Hsp104A503V-DPLA was mixed in varying ratios with Hsp104A503V to create heterohexamer ensembles and luciferase disaggregase

activity was assessed. Values represent means ± SEM (n = 3). Black line denotes the theoretical curve of a probabilistic mechanism where only a single A503V

subunit is required for disaggregation.

(J) Experiments were performed as in (I) for Hsp104A503V-DWB andHsp104A503V-DPLA-DWB. Theoretical curves are shownwherein adjacent pairs of A503V:A503V or

A503V:mutant subunits confer hexamer activity, while adjacent mutant subunits have no activity. Each adjacent A503V:A503V pair has an activity of 1/6. Adjacent

A503V:mutant pairs have a stimulated activity (s), and the effect of various s values are depicted. Values represent means ± SEM (n = 3).
(two to five mutant subunits abolish activity), or globally cooper-

ative (one mutant subunit abolishes activity) (DeSantis et al.,

2012). Incorporation of Hsp104A503V-DWA subunits (which bear

the ‘‘double Walker A’’ [DWA] K218T:K620T mutations and

cannot bind ATP) or Hsp104A503V-DPLA subunits (which bear the

‘‘double pore loop’’ [DPL] Y257A:Y662A mutations and cannot

bind substrate) into Hsp104A503V hexamers caused a roughly

linear decline in luciferase disaggregase activity (Figure 6I). This

linear decline indicates that, likeHsp104WT,Hsp104A503V hexam-

ers resolve disordered aggregates via a probabilistic mechanism

(DeSantis et al., 2012). Thus, a single Hsp104A503V subunit per

hexamer able to hydrolyze ATP and engage substrate can drive

disaggregation.
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However, Hsp104A503V hexamers operate differently than

Hsp104WT hexamers. A single Hsp104DWB subunit (which bears

the ‘‘double Walker B’’ [DWB] E285Q:E687Q mutations and can

bind but not hydrolyze ATP) inactivates the Hsp104WT hexamer

(DeSantis et al., 2012). By contrast, the luciferase disaggregase

activity of Hsp104A503V was stimulated by Hsp104A503V-DWB sub-

units (Figure 6J). Fluorescence resonance energy transfer (FRET)

studies confirmed that Hsp104A503V-DWB subunits incorporated

into Hsp104A503V hexamers. The FRET efficiency was 0.36

(compared to 0.38 for mixing Hsp104WT with Hsp104DWB;

DeSantis et al., 2012) using the conditions employed for lucif-

erase reactivation. In high-salt buffer (1 M NaCl), hexamerization

is inhibited and FRET efficiency decreased to 0.24. At a higher



Hsp104concentration (1mM),which favors hexamerization, FRET

efficiency increased to 0.43. We could model the stimulatory ef-

fect of Hsp104A503V-DWB subunits if we imposed rules whereby

an Hsp104A503V-DWB subunit stimulates activity of an adjacent

Hsp104A503V subunit �2-fold (Figure 6J). This stimulation

depended on substrate binding by Hsp104A503V-DWB as

Hsp104A503V-DPLA-DWB subunits (which bear the ‘‘double pore

loop’’ and DWB Y257A:E285Q:Y662A:E687Q mutations and

canbind, but not hydrolyze, ATPandcannot bindsubstrate) failed

to stimulate adjacent Hsp104A503V subunits (Figure 6J). Thus,

Hsp104A503V hexamers operate via principles distinct from those

of Hsp104WT hexamers. The Hsp104A503V hexamer displays

greaterplasticityand toleratesawider varietyof subunit-inactivat-

ing events to maintain a robust disaggregase activity. Thus, an

Hsp104A503V subunit that (1) binds but cannot hydrolyze ATP

and (2) engages substrate stimulates the disaggregase activity

of anadjacentHsp104A503V subunit. InHsp104WT, a singlesubunit

with these properties inactivates the hexamer. The increased re-

silience of Hsp104A503V hexamers to subunit-inactivating events

likely empowers facile resolution of recalcitrant substrates.

Hsp104A503V, Hsp104A503S, and Hsp104A503V-DPLF

Disaggregate Preformed a-Syn Fibrils More
Efficaciously Than Hsp104WT

To test Hsp104A503V, Hsp104A503S, and Hsp104A503V-DPLF in

comparison to Hsp104WT against a recalcitrant PD-associated

substrate we employed a-syn fibrils, allowing us to distinguish

if Hsp104 prevented amyloid formation or eliminated preformed

amyloid. Hsp104A503V, Hsp104A503S, and Hsp104A503V-DPLF dis-

aggregated preformed a-syn fibrils at concentrations where

Hsp104WT was inactive (Figures 7A–7C). Indeed, electron micro-

scopy (EM) revealed that a-syn fibrils were converted to small

structures by low concentrations of Hsp104A503V, Hsp104A503S,

and Hsp104A503V-DPLF, whereas Hsp104WT left fibrils intact (Fig-

ure 7C). Thus, Hsp104A503V, Hsp104A503S, andHsp104A503V-DPLF

are more powerful amyloid disaggregases than Hsp104WT.

Hsp104A503V and Hsp104A503S Disaggregate Preformed

TDP-43 and FUS Aggregates More Efficaciously Than
Hsp104WT

Next, we tested whether Hsp104A503V and Hsp104A503S were

more potent disaggregases of TDP-43 and FUS (Johnson

et al., 2009; Sun et al., 2011). Hsp104WT was unable to resolve

TDP-43 aggregates and slightly enhanced TDP-43 aggregation

in the absence of Ssa1, Ydj1, and Sse1 (Figure 7D). By contrast,

Hsp104A503V and Hsp104A503S partially resolved TDP-43 aggre-

gates in the absence of Ssa1, Ydj1, and Sse1 (Figure 7D).

Hsp104A503V and Hsp104A503S in the presence of Ssa1, Ydj1,

and Sse1, but not Hsp104WT, effectively dissolved short TDP-

43 filaments and amorphous structures (Figures 7D and 7E).

Very similar results were obtained with preformed FUS fibrils

(Figures 7F and 7G). Hsp104WT slightly increased FUS aggrega-

tion in the absence of Ssa1, Ydj1, and Sse1, whereas

Hsp104A503V and Hsp104A503S modestly reduced aggregation

(Figure 7F). Hsp104A503V and Hsp104A503S effectively disaggre-

gated FUS in the presence of Ssa1, Ydj1, and Sse1, whereas

Hsp104WT was ineffective (Figure 7F). Indeed, Hsp104A503V

and Hsp104A503S eradicated FUS fibrils (Figure 7G). Thus,
Hsp104A503V and Hsp104A503S disaggregate preformed TDP-

43 and FUS aggregates more efficaciously than Hsp104WT.

DISCUSSION

Here, we demonstrate that Hsp104, a protein disaggregase from

yeast, can be modified to powerfully eradicate diverse sub-

strates implicated in ALS and PD. We have developed the first

(to our knowledge) disaggregases (or even chaperones) engi-

neered to optimize proteostasis. Indeed, enhanced Hsp104

variants are the first agents defined to reverse TDP-43 and

FUS aggregation. They not only suppress toxicity and eliminate

protein aggregates but also restore proper protein localization.

Importantly, these Hsp104 variants are not overtly toxic like other

MD mutants (Lipi�nska et al., 2013). Thus, potentiated Hsp104

variants can be uncovered that are not invariably toxic and that

rescue various toxic neurodegenerative disease proteins

in vitro and in vivo under conditions where Hsp104WT is impo-

tent. Potentiated Hsp104 variants suppress neurodegeneration

in aC. elegans PDmodel. Thus, we provide a promising example

of engineered disaggregases rescuing neurodegeneration in

a metazoan nervous system under conditions where the WT

disaggregase is ineffective. Our findings suggest that general

neuroprotection via activated protein disaggregases may be

possible for diverse neurodegenerative diseases.

We have identified the MD as a key region governing Hsp104

function. It is perplexing and unprecedented that missense mu-

tations to nearly any residue at specific and disparate positions

(e.g., A503, Y507) confer a therapeutic gain of function. Potenti-

ation stems from loss of amino acid identity rather than specific

mutation. Thus, Hsp104 activity is likely tightly constrained but

can be unleashed by subtle changes to side chains at specific

positions. These constraints are too tight for Hsp104WT to

counter TDP-43, FUS, and a-syn aggregation and toxicity under

the conditions employed in our experiments. Thus, we reveal a

surprising inimical deficit in existing disaggregase functionality.

We suggest that the MD functions as a capacitor braced to un-

leash Hsp104 activity. Missense mutations at specific positions

in MD helix 1, 2, or 3 or the small domain of NBD1 (immediately

C terminal to theMD) likely destabilize autoinhibitory interactions

that dampen Hsp104 activity or induce conformational changes

that mimic or aid in an allosteric activation step. Potentiating mu-

tations obviate any absolute requirement for Hsp70 and enhance

Hsp104 ATPase activity, substrate translocation speed, unfol-

dase activity, and amyloid disaggregase activity. Additionally,

Hsp104A503V hexamers display enhanced plasticity and are

more resistant to defective subunits than Hsp104WT. Thus,

enhanced variants possess a more robust disaggregase activity

that is desensitized to inhibition. Irrespective of the mechanism

of activation, we have established that seemingly minor struc-

tural modulation of a disaggregase can suppress a constellation

of otherwise intractable proteotoxicities in vivo. We are unaware

of any precedent for attaining such a wide-reaching set of gain of

therapeutic functions via such minor changes in primary

sequence, e.g., by removing a single methyl group (A503G) or

by adding a single methylene bridge (V426L).

Further engineering to develop enhanced variants that specif-

ically target single proteins (e.g., disaggregate FUS, but not
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Figure 7. Potentiated Hsp104 Variants Disaggregate Preformed a-Syn, TDP-43, and FUS Fibrils More Efficaciously Than Hsp104WT

(A–C) a-syn fibrils were incubated without or with Hsp104WT, Hsp104A503V, Hsp104A503S, or Hsp104A503V-DPLF for 1 hr at 30�C. Fiber disassembly was assessed

by ThT fluorescence (A), sedimentation analysis (B), or (C) EM (bar, 0.5 mm). (A and B) Values represent means ± SEM (n = 2).

(legend continued on next page)
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TDP-43) will prove valuable to minimize any off-target effects.

Hsp104 could be potentiated against any protein, which might

find key applications in purification of troublesome recombinant

proteins. Irrespective of the feasibility of introducing Hsp104 as a

therapeutic, our work suggests that protein aggregates are not

intractable and that general neuroprotection via altered proteo-

stasis is achievable. Ultimately, we envision introducing potenti-

ated Hsp104 variants in short transient bursts to restore natural

proteostasis. In this way, long-term expression of an exogenous

protein is avoided. Reactivation of disease-associated proteins

to their nonpathogenic states suggests that Hsp104 variants

and other agents that achieve this goal may be highly promising

for halting and reversing neurodegenerative disease. Nonethe-

less, caution is needed and many barriers must be breached

to translate Hsp104 variants into disruptive technologies and

potential therapeutics.

EXPERIMENTAL PROCEDURES

Yeast Strains and Media

Yeast were WTW303a or the isogenic W303aDhsp104 strain. Dire1 and Datg8

were in BY4741. Standard methods were used for transformation and spot-

ting. See the Extended Experimental Procedures for more information.

Library Construction and Screening

The pore loop variant library was constructed via QuikChange mutagenesis

(Agilent) and DNA shuffling to obtain randomly combined residues at positions

Y257 and Y662. The MD variant library was constructed using GeneMorph II

EZClone Domain Mutagenesis kit (Agilent) with modifications. Libraries were

transformed into yeast harboring pAG303GAL-TDP-43, pAG303GAL-FUS,

or pAG303GAL-a-syn. Yeast were grown overnight in raffinose-containing

media and plated on galactose-containing media for selection. Select colonies

were sequenced by colony PCR. Isolated Hsp104 variants were cloned inde-

pendently and transformed into yeast to ensure they suppressed toxicity. See

the Extended Experimental Procedures for more information.

Hsp104 Variant Toxicity and Thermotolerance

W303aDhsp104 yeast were transformed with the indicated 416GAL-Hsp104

plasmid. Cultures were grown in synthetic raffinose medium to A600nm = 2.0,

spotted onto SD-Ura or SGal-Ura, and incubated at 30�C or 37�C for 48–

72 hr. For thermotolerance, yeast were grown to saturation in synthetic raffi-

nose media and diluted to A600nm = 0.3 in galactose-containing media. After

4 hr at 30�C, cells were heat shocked at 50�C for 0–30 min, cooled for 2 min

on ice, serially diluted, and spotted on synthetic dropout media containing

galactose. Plates were incubated at 30�C for 48–72 hr.

Sedimentation Analysis

Yeast were induced in galactose-containing medium for 5 hr (TDP-43 and

FUS) or 8 hr (a-syn). Cells were lysed, separated into soluble and insoluble

fractions by sedimentation, and processed for quantitative immunoblot. See

the Extended Experimental Procedures for more information.

Fluorescence Microscopy

After 5 hr induction at 30�C (8 hr for a-syn strains), yeast cultures were pro-

cessed for fluorescence microscopy. For TDP-43, cells were fixed and stained

with 40,6-diamidino-2-phenylindole (DAPI) to visualize nuclei. For FUS, live

cells were used and nuclei were visualized with Hoechst dye. See the

Extended Experimental Procedures for more information.
(D and E) TDP-43 aggregates were incubated with buffer, Hsp104WT, Hsp104A5

Aggregate dissolution assessed by turbidity. Values represent means ± SEM (n

(F and G) FUS aggregates were incubated with buffer, Hsp104WT, Hsp104A503V, or

dissolution assessed by turbidity (absorbance at 395 nm). Values represent mean
Analysis for Dopaminergic Neuron Death in C. elegans

Three distinct C. elegans stable lines were created for each Hsp104 variant.

Age synchronized worms were generated by allowing 50 transgenic adults

on a NGM plate to lay eggs for 3 hr. Adults were then removed (day 0). At

day 7 and 10 of analysis, 40 randomly selected transgenic worms were placed

in 3mM levamisol for paralysis and transferred to a 2%agarose pad on a glass

microscope slide. Worms have 8 dopaminergic neurons visible through Pdat-

1::gfp, which fade in an age-dependent manner due to a-syn accumulation.

Only the six anterior neurons of the worm were analyzed. Each worm was

scored ‘‘Wild Type’’ when there was a full complement of visible, anterior den-

dritic processes.Wormsmissing one ormore dendritic processeswere scored

‘‘Not Wild Type.’’ In total, three separate stable lines were analyzed. See the

Extended Experimental Procedures for more details.

Protein Purification

Proteins were purified as recombinant proteins in E. coli using standard tech-

niques (see Extended Experimental Procedures).

ATPase Activity

Hsp104 (0.042 mMhexamer) was incubated with ATP (1 mM) for 5 min at 25�C.
ATPase activity was assessed by inorganic phosphate release using a mala-

chite green detection kit (Innova).

Luciferase Reactivation

Aggregated luciferase (50 nM) was incubated with Hsp104 (0.167 mM hex-

amer) with ATP (5.1mM) and an ATP regeneration system (ARS; 1mMcreatine

phosphate, 0.25 mM creatine kinase) plus or minus Hsc70 (0.167 mM) and Hdj2

(0.167 mM) for 90 min at 25�C (DeSantis et al., 2012). In some reactions

(Figure 6C), Hsc70 concentration was 0.167 mM and Hdj2 concentration was

0.073mM. In other reactions, Hsc70 and Hdj2 were replaced with Ssa1

(0.167 mM) and Ydj1 (0.073 mM) or Ssa1 (0.167 mM), Ydj1 (0.073 mM), and

Sse1 (0.043 mM). Luciferase activity was assessed by luminescence.

Mutant doping experiments were as described previously (DeSantis et al.,

2012). The Hsp104A503V variants Hsp104A503V-DWA (K218T:A503V:K620T),

Hsp104A503V-DPLA (Y257A:A503V:Y662A), Hsp104A503V-DWB (E285Q:A503V:

E687Q), and Hsp104A503V-DPLA-DWB (Y257A:E285Q:A503V:Y662A:E687Q)

were mixed with Hsp104A503V in varying ratios to give a total concentration

of 0.5 mM Hsp104 hexamer. Hsc70 and Hdj2 were omitted for these experi-

ments. Random subunit mixing was confirmed by FRET. See the Extended

Experimental Procedures for more information.

RepA1-70-GFP Unfolding

RepA1-70-GFP unfolding was as described previously (Doyle et al., 2007).

FITC-Casein Degradation and Binding

FITC-casein (0.1–50 mM) was incubated at 25�C with HAP or HAPA503V (1 mM

hexamer) and ClpP (21 mMmonomer) plus ATP (5 mM) and ARS. Degradation

of FITC-casein was monitored by fluorescence (excitation 490 nm, emission

520 nm). To calculate initial rate, a linear fit of the first 2.5 min of the reaction

was constructed and the slope was calculated. To assess binding, FITC-

casein (6 nM) was incubated with increasing concentrations (0–5 mM) of

Hsp104WT or Hsp104A503V with 2 mM ATPgS for 10 min at 25�C. Fluorescence
polarization was measured (excitation 470 nm, emission 520 nm).

a-Syn Fibril Disaggregation

a-Syn (80 mM) was assembled into fibrils via incubation in 40 mMHEPES-KOH

(pH 7.4), 150 mM KCl, 20 mMMgCl2, 1 mM dithiothreitol for 48 hr at 37�C with

agitation. a-Syn fibrils (0.5 mM monomer) were incubated without or with

Hsp104WT, Hsp104A503V, Hsp104A503S, or Hsp104A503V-DPLF (0.5 or 5 mM)

plus ATP (10 mM) and ARS (20 mM creatine phosphate and 0.5 mM creatine
03V, or Hsp104A503S plus or minus Ssa1, Ydj1, and Sse1 for 1 hr at 30�C. (D)
= 3). (E) Aggregate dissolution assessed by EM. Scale bar, 0.5 mm.

Hsp104A503S plus or minus Ssa1, Ydj1, and Sse1 for 1 hr at 30�C. (F) Aggregate
s ± SEM (n = 3). (G) Aggregate dissolution assessed by EM. Scale bar, 0.5 mm.
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kinase) for 1 hr at 30�C. Disaggregation was assessed by Thioflavin-T (ThT)

fluorescence, sedimentation analysis, and EM (Lo Bianco et al., 2008).

TDP-43 and FUS Disaggregation

To generate TDP-43 and FUS aggregates, GST-TEV-TDP-43 (6 mM) or GST-

TEV-FUS (6 mM) was incubated with TEV protease in 50 mM Tris-HCl

(pH 7.4), 50 mM KCl, 5 mM MgCl2, 0.2 M trehalose, and 20 mM glutathione.

FUS was aggregated for 90 min at 25�C without agitation, by which time all

the FUS had aggregated (Sun et al., 2011). TDP-43 was aggregated for 4 hr

at 25�C with agitation, by which time all the TDP-43 had aggregated (Johnson

et al., 2009). TDP-43 or FUS aggregates (3 mM monomer) were incubated for

1 hr at 30�Cwith Hsp104WT, Hsp104A503V, or Hsp104A503S (1 mM) plus orminus

Ssa1 (1 mM), Ydj1 (0.44 mM), and Sse1 (0.26 mM) plus ATP (10 mM) and ARS

(20 mM creatine phosphate and 0.5 mM creatine kinase). Disaggregation

was assessed via turbidity (absorbance at 395 nm) and EM (Johnson et al.,

2009; Sun et al., 2011).

SUPPLEMENTAL INFORMATION

Supplemental Information includes Extended Experimental Procedures and

five figures and can be found with this article online at http://dx.doi.org/10.
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